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Abstract. The recently proposed method of calculating perturbation energies using a non-
normalizable wavefunction by Skála andČı́žek is analysed and rigorously proved.

In a recent article, Sḱala andČı́žek [1], hereafter referred to as SC, have described a new
method for carrying out large-scale perturbation calculations specially adapted to numerical
evaluations. The most appealing feature of their method is the use of non-quadratically
integrable functions.

Large-scale perturbation calculations are commonly applied to problems, like the
anharmonic oscillatorx2 +λx4, which permit very efficient evaluations by using hypervirial
relations [2]. On the other hand,numericallyperturbation expansions are not frequently to
carried out, Nevertheless, these expansions may be interesting in specific physical problems,
like the Van der Waals perturbation theory applied to many-body systems [3], which do not
permit an algebraic treatment.

However, the use of non-normalizable wavefunctions sounds abnormal in the field of
quantum mechanics, always tied to aL2 Hilbert space. Surprisingly, non-normalizable
functions do appear in the bulk of theexponential Sor coupled cluster theory, which is
interesting for the description of many-particle quantum systems [4].

The subject of the mentioned work of SC is, then, quite appealing and of potential
interest. A first consideration of their paper reveals, in our opinion, some weak mathematical
points. However, some practice with the proposed algorithm convinced us of its correctness.
The purpose of this comment is to give a general proof of the SC method.

The perturbation problem is stated in the usual way found in any quantum mechanics
textbook: given a HamiltonianH = H0 + λH1, to find the energyE and wavefunction9
into which the unperturbed levelE0 and wavefunction90 have changed. By assuming for
E and9 a power expansion in the coupling parameterλ,

9 = 90 + λ91 + · · ·
E = E0 + λE1 + · · ·
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one gets the hierarchy of equations

(H0 − E0)90 = 0 (1)

(H0 − E0)9n = En90 +
n−1∑
i=1

Ei9n−i − H19n−1. (2)

These equations are supplemented by a normalization condition, which is usually recast
in the form

〈90|9n〉 = δn,0. (3)

The standard (academic) treatement of these equations proceeds by using the assumed
completeness of the eigenfunctions ofH0 to determineEn and9n just by calculating matrix
elements. This is particularly useful in the case of low-order perturbation calculations or in
problems (like theλx4 perturbation) with a reduced number of non-null matrix elements.
This requires, of course, the knowledge of the full spectrum of the unperturbed Hamiltonian.

One of the alleged advantages of the SC proposal is that one does not need to know
the spectrum and eigenfunctions ofH0. For the sake of comparison, we recall the usual
numericalprocedure to deal with the previous equations, which again does not require the
knowledge of theH0 spectrum. First of all, one must determine the unperturbed solution by
solving the eigenvalue problem of equation (1), obtaining bothE0 and90. Then, assuming
that the energies and wavefunctions up to ordern−1 are known, i.e. up toEn−1 and9n−1,
one gets the next correction to the energy as

En = 〈90|H1|9n−1〉 (4)

i.e. simply by means of a quadrature. OnceEn is known, 9n is obtained by solving a
second-order inhomogeneous differential equation, equation (2), which requires one to find
two independent solutions and solve a 2× 2 system of linear equations in order to fulfill
the boundary conditions.

SC propose, instead, to use only equation (2) at ordern to get both the energy and
wavefunction corrections. To this end their key statement is that9n depends linearly on
the parameterEn

9n(En, x) = F(x)En + 8n(x) (5)

F(x) being auniversalfunction, independent of the ordern of the perturbation.
This most remarkable fact turns out to be true, but the argument given by SC to prove

it is not correct. They deduce it from their equation (10)

(H0 − E0)
∂9n(En, x)

∂En

= 90 (6)

but from here one can only infer

∂9n(En, x)

∂En

= F(x) + G(En)8(x) (7)

where G(En) is an arbitrary function of En and 8(x) is an eigenstate (not neccesarily
quadratically integrable) ofH0 with eigenvalueE0. Equation (7) is in contrast with the
result of [1],

∂9n(En, x)

∂En

= F(x). (8)

Equation (5) may, in fact, be proved by directly integrating the perturbation equation (2).
Let us note that the value of the energyEn which has appeared so far isnot yetthe value
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of the perturbation correction, but an arbitrary parameter, and, in consequence, the related
solution9n(En, x) will be, in general, non-normalizable.

In order to use a more compact notation, let us introduce

F(x) =
n−1∑
i=1

Ei9n−i − H19n−1 (9)

which at this step is already known, and concentrate on the equation

(−D2 + V0(x) − E0)9n(x) = En90(x) + F(x) (10)

where the unperturbed Hamiltonian has been explicitly written in terms of the second
derivative operatorD and the unperturbed potentialV0. The perturbation is included in
the inhomogeneous termF(x).

This equation may be easily integrated. After writing

9n(x) = 90(x)fn(x) (11)

the resulting equation for the new functionfn is

− f ′′
n (x) − 2

9 ′
0(x)

90(x)
f ′

n(x) = En + F(x)

90(x)
(12)

which is trivially recognized as a first-order linear differential equation forf ′
n which is

integrated with the result

f ′
n(y) = − 1

92
0(y)

∫ y

a

[
En + F(z)

90(z)

]
92

0(z) dz. (13)

The lower limit a of this integral represents the arbitrary constant in the integration
process and will be used to accommodate the required boundary condition on the
wavefunction.

The full solution is, obviously,

9n(x) = −90(x)

∫ x

b

1

92
0(y)

∫ y

a

[
En + F(z)

90(z)

]
92

0(z) dz (14)

where againb accounts for the additive arbitrary constant introduced in gettingfn from f ′
n.

Notice that, as far asEn is yet arbitrary, the resulting wavefunction will not be, in general,
normalizable.

Equation (14) contains the main result of [1], i.e. it is a clear proof of the linear
dependence onEn of equation (5) and, even more, it gives the explicit form forF(x)

F (x) = −90(x)

∫ x

b

dy
1

92
0(y)

∫ y

a

92
0(z) dz. (15)

Once the boundary conditions have been fixed, i.e. for specific values ofa and b, this
function isuniversal, i.e. independent of the perturbation ordern.

For this equation to be useful, one would like to choose the boundary conditions in such
a form that whenEn is the exact perturbation energy correction, the corresponding9n(x)

satisfies the physical boundary conditions, i.e. is square integrable. This means that the
following limits should hold:

lim
x→±∞ 9n(x) = 0. (16)

The condition at−∞ may be easily fulfilled by takingb = −∞ for one of the lower limits.
We have not found a simple way of ensuring the condition at+∞. Alternatively, we have
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assumed another condition forfn(x) at −∞, namely, that its derivative also goes to zero.
Then, the required value fora is again−∞.

Concentrating on this specific function, explicitly given by

fn(x) = −
∫ x

−∞
dy

1

92
0(y)

∫ y

−∞

[
En + F(z)

90(z)

]
92

0(z) dz (17)

it is convenient to check its behaviour at large and positive values ofx, to secure that it
does not spoil the nice normalizability condition of90(x). So, let us analyse the limit

lim
x→∞ −

∫ x

−∞
dy

1

92
0(y)

∫ y

−∞

[
En + F(z)

90(z)

]
92

0(z) dz. (18)

The integral overy refers to a function 1/92
0(y) which grows unboundedly for large values

of y, because90(y) is an eigenstate of the unperturbed Hamiltonian and consequently
square integrable. To have a finite value, the other factor in this integral must go to zero at
largey, i.e. ∫ ∞

−∞

[
En + F(z)

90(z)

]
92

0(z) dz = 0 (19)

which gives exactly the value quoted in equation (4) forEn. In conclusion, our specific
way of selecting the boundary conditions guarantees the normalizability of the pertubation
energy correction, once the appropiate value for the energyEn has been used.

We may go one step further to obtain an operative method to get the value of the
perturbed energy. If we consider two solutions for9n, one corresponding toEn and the
other toE′

n = 0, and bothwith the same boundary conditionsas explained above, then there
follows the relation

En = 9n(En, x0) − 9n(0, x0)

F (x0)
(20)

in such a form that, for sufficiently large value ofx0, it is converted into

En = −9n(0, x0)

F (x0)
(21)

which coincides with equation (14) of [1]. Our equation (21) is more precise than the
equivalent equation of [1] because we have fixed the boundary conditions for the integration
of the inhomogeneous equation.

Of course, given the universal character of the functionF(x), it needs to be determined
only once, for example along the calculation of the first perturbation correction. Then, the
determination of sucessive orders is done by integrating equation (2) forEn = 0, starting
at a large and negativex with starting values for9n(x) = 0 and9 ′

n(x) = 0, up to some
large and positive value ofx, and dividing byF(x) as in equation (21).

In conclusion, the main difference between the SC proposal and the usual numerical
procedure consists in calculatingEn by solving the differential equation (10) instead
of performing the quadrature (4). The SC method deals with growing functions and,
consequently, is prone to numerical instabilities and overflows. So, one is tempted to
conclude with the spanish proverb ‘Para este viaje no hacı́an falta alforjas’, which may
be translated as ‘too much luggage for such a short trip’. Nevertheless, the fact that when
dealing with non-normalizable functions and, in consequence, exiting the usual Hilbert space
of quantum mechanics, one may still get relevant results is very appealing.
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