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Abstract. The recently proposed meghod of calculating perturbation energies using a non-
normalizable wavefunction by &ka andCizek is analysed and rigorously proved.

In a recent article, SMa andCizek [1], hereafter referred to as SC, have described a new
method for carrying out large-scale perturbation calculations specially adapted to numerical
evaluations. The most appealing feature of their method is the use of non-quadratically
integrable functions.

Large-scale perturbation calculations are commonly applied to problems, like the
anharmonic oscillatar? 4 x4, which permit very efficient evaluations by using hypervirial
relations [2]. On the other handumerically perturbation expansions are not frequently to
carried out, Nevertheless, these expansions may be interesting in specific physical problems,
like the Van der Waals perturbation theory applied to many-body systems [3], which do not
permit an algebraic treatment.

However, the use of non-normalizable wavefunctions sounds abnormal in the field of
quantum mechanics, always tied toZ& Hilbert space. Surprisingly, non-normalizable
functions do appear in the bulk of thexponential Sor coupled cluster theory, which is
interesting for the description of many-particle quantum systems [4].

The subject of the mentioned work of SC is, then, quite appealing and of potential
interest. A first consideration of their paper reveals, in our opinion, some weak mathematical
points. However, some practice with the proposed algorithm convinced us of its correctness.
The purpose of this comment is to give a general proof of the SC method.

The perturbation problem is stated in the usual way found in any quantum mechanics
textbook: given a Hamiltonial = Hp + 1 Hj, to find the energy and wavefunctionV
into which the unperturbed levely and wavefunctionVy have changed. By assuming for
E and W a power expansion in the coupling parameter

U =Yg+ AW+
E=Eo+AEi+---
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one gets the hierarchy of equations

(Ho — Eo)Wo =0 (1)
n—1
(Ho— Eo)¥y = E,Wo+ Y EW, i — H1W, 1. @)
i=1
These equations are supplemented by a normalization condition, which is usually recast
in the form

(\I’0|\I/n> = 811,0- (3)

The standard (academic) treatement of these equations proceeds by using the assumed
completeness of the eigenfunctionskf to determinek, andW¥,, just by calculating matrix
elements. This is particularly useful in the case of low-order perturbation calculations or in
problems (like the\x* perturbation) with a reduced number of non-null matrix elements.
This requires, of course, the knowledge of the full spectrum of the unperturbed Hamiltonian.

One of the alleged advantages of the SC proposal is that one does not need to know
the spectrum and eigenfunctions Hf. For the sake of comparison, we recall the usual
numericalprocedure to deal with the previous equations, which again does not require the
knowledge of theH, spectrum. First of all, one must determine the unperturbed solution by
solving the eigenvalue problem of equation (1), obtaining kiggtand W,. Then, assuming
that the energies and wavefunctions up to orderl are known, i.e. up t&,_; and ¥, _1,
one gets the next correction to the energy as

E, = (Wo|H1|V,—1) 4)

i.e. simply by means of a quadrature. OnEg is known, ¥, is obtained by solving a
second-order inhomogeneous differential equation, equation (2), which requires one to find
two independent solutions and solve a2 system of linear equations in order to fulfill
the boundary conditions.

SC propose, instead, to use only equation (2) at ondéw get both the energy and
wavefunction corrections. To this end their key statement is thatlepends linearly on
the parametef,

W, (E,,x) =FX)E, + ®,(x) (5)

F(x) being auniversalfunction, independent of the orderof the perturbation.
This most remarkable fact turns out to be true, but the argument given by SC to prove
it is not correct. They deduce it from their equation (10)

0V, (Ey, x)
Hy— Ep)——— =V, 6
(Ho — Eo) 3E, 0 (6)
but from here one can only infer
8\Ilil Env
P0En) _ po) + GENO@) )

JIE,
where G(E,) is an arbitrary function of E,, and ®(x) is an eigenstate (not neccesarily
guadratically integrable) offy with eigenvalueEy. Equation (7) is in contrast with the
result of [1],
oW, (Ey, x)
JIE,
Equation (5) may, in fact, be proved by directly integrating the perturbation equation (2).
Let us note that the value of the enerfly which has appeared so farnet yetthe value

= F(x). 8)



A new efficient method for calculating perturbation energies 6463

of the perturbation correction, but an arbitrary parameter, and, in consequence, the related
solutionw, (E,, x) will be, in general, non-normalizable.
In order to use a more compact notation, let us introduce
n—1
.7'-()6) = Z ENV,; — H1V, 1 (9)
i=1
which at this step is already known, and concentrate on the equation
(—=D? + Vo(x) — EQ) W, (x) = E,Wo(x) + F(x) (10)

where the unperturbed Hamiltonian has been explicitly written in terms of the second
derivative operatorD and the unperturbed potenti&,. The perturbation is included in
the inhomogeneous terf(x).

This equation may be easily integrated. After writing

\I‘”(X) = \IJO(x)fn(x) (11)
the resulting equation for the new functigh is
Wo(x) ]"(x)
— f'(x)—2-2 = 12
S (%) \IJ()fn() \Il(x) (12)

which is trivially recognized as a first-order linear differential equation forwhich is
integrated with the result

/ f(Z) 2
7(y) = f [ ]\y (2) dk. 13
The lower limita of th|s integral represents the arbitrary constant in the integration
process and will be used to accommodate the required boundary condition on the

wavefunction.
The full solution is, obviously,

5’:(2)
W, (x) = —‘Ifo(x)/ \Ilz(y)/ [ To(z )} WG(z) dz (14)

where agairb accounts for the additive arbitrary constant introduced in getfinfjom f,.
Notice that, as far a&, is yet arbitrary, the resulting wavefunction will not be, in general,
normalizable.

Equation (14) contains the main result of [1], i.e. it is a clear proof of the linear
dependence ot, of equation (5) and, even more, it gives the explicit form fox)

X 1 y
F(x) = —Wo(x) /b dy% / Wl(z) dz. (15)

Once the boundary conditions have been fixieel. for specific values ofi and b, this
function isuniversal i.e. independent of the perturbation order

For this equation to be useful, one would like to choose the boundary conditions in such
a form that whenkE, is the exact perturbation energy correction, the correspondijfg)
satisfies the physical boundary conditions, i.e. is square integrable. This means that the
following limits should hold:

ETOO W, (x) = 0. (16)

The condition at-co may be easily fulfilled by taking = —oo for one of the lower limits.
We have not found a simple way of ensuring the conditios-ab. Alternatively, we have
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assumed another condition fg(x) at —oo, namely, that its derivative also goes to zero.
Then, the required value faer is again—oo.
Concentrating on this specific function, explicitly given by

]:(Z) 2
fn(x) = / dy‘I’O(y)/ [ e )j| Wi(z)dz 17)

it is convenient to check its behaviour at large and positive values ¢d secure that it
does not spoil the nice normalizability condition ¥§(x). So, let us analyse the limit

) F(z)
x'inoo_f_oo wz(y)/[ wu]%()d (18)

The integral over refers to a function A¥2(y) which grows unboundedly for large values
of y, becausely(y) is an eigenstate of the unperturbed Hamiltonian and consequently
square integrable. To have a finite value, the other factor in this integral must go to zero at

largey, i.e.
> F(2)
/_M[E+w>}%()d =0 (19)

which gives exactly the value quoted in equation (4) fr. In conclusion, our specific
way of selecting the boundary conditions guarantees the normalizability of the pertubation
energy correction, once the appropiate value for the engfglias been used.

We may go one step further to obtain an operative method to get the value of the
perturbed energy. If we consider two solutions fby, one corresponding t&, and the
other toE; = 0, and bothwith the same boundary conditioas explained above, then there
follows the relation

lIjn(Env XO) - "I]n (O, xO)

E, = 20
F (xo0) (20)

in such a form that, for sufficiently large value &f, it is converted into

En _ _\Iln (07 )Co) (21)
F(x0)

which coincides with equation (14) of [1]. Our equation (21) is more precise than the
equivalent equation of [1] because we have fixed the boundary conditions for the integration
of the inhomogeneous equation.

Of course, given the universal character of the functitn), it needs to be determined
only once, for example along the calculation of the first perturbation correction. Then, the
determination of sucessive orders is done by integrating equation (&,fet 0, starting
at a large and negative with starting values for, (x) = 0 and W, (x) = 0, up to some
large and positive value of, and dividing byF (x) as in equation (21).

In conclusion, the main difference between the SC proposal and the usual numerical
procedure consists in calculating, by solving the differential equation (10) instead
of performing the quadrature (4). The SC method deals with growing functions and,
consequently, is prone to numerical instabilities and overflows. So, one is tempted to
conclude with the spanish proverb ‘Para este viaje nddmatalta alforjas’, which may
be translated as ‘too much luggage for such a short trip’. Nevertheless, the fact that when
dealing with non-normalizable functions and, in consequence, exiting the usual Hilbert space
of qguantum mechanics, one may still get relevant results is very appealing.
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